vistas

martes, 16 de noviembre de 2021

 

Sistema de numeración unario

El sistema de numeración unario es un sistema de numeración biyectivo de base 1. Es el sistema de numeración más simple que existe para representar los números naturales. Para representar un número N, se elige un símbolo arbitrario, que será la única cifra que tenga dicho sistema de numeración, y se repetirá N veces. Por ejemplo, si tomamos el símbolo | como cifra única, el número 6 se representará como ||||||. El sistema tradicional de contar con los dedos es un ejemplo de numeración unaria. El sistema unario es útil en procesos de conteo, como el marcador de un deporte, o contar el número de personas que entran en un lugar, o el número de votos que van saliendo en una elección, ya que no requiere ir enmendando los resultados previos, simplemente hay que seguir añadiendo símbolos para su posterior recuento.

 


Ejemplos de este sistema.

Las marcas se suelen agrupar frecuentemente en grupos de cinco para que sea más legible y sencillo el recuento posterior. Cuando el símbolo utilizado es una raya (el más frecuente) es común atravesar la quinta línea sobre las cuatro previas para formar grupos. En los sistemas de numeración chino, japonés y coreano se agrupan los símbolos se van añadiendo hasta que el quinto cierra el grupo y forma un símbolo que significa cinco.

 


Otro método utilizado en Argentina, Brasil y también en Francia es ir dibujando las líneas formando los lados de un cuadrado. Uno se representa con una línea vertical, el dos formaría con ésta una L, el tres formaría una U junto a ellos, el cuatro cerraría el cuadrado y el cinco se añadiría en una de las diagonales del mismo.

Existen multitud de sistemas de numeración antiguos que, sin ser unarios, provienen claramente de sistemas de este tipo:

Los tres primeros números del sistema de numeración romano (hasta el cuatro en los relojes) se basan en el sistema de numeración unario.

El sistema de numeración egipcio utiliza el sistema unario para números del uno al diez, después utiliza un número para el diez, que repite como si fuera un sistema unario para los números del diez al noventa. Así sucesivamente, tiene símbolos para 1, 10, 100, 1000, 10.000, 100.000 y hasta 1.000.000 que repite y conjunta para formar números.

Ventajas e inconvenientes del sistema de numeración.

La suma y resta de números en sistema unario se hacen simples, ya que sólo consiste en juntar dos números o tachar símbolos. Sin embargo, la multiplicación y división en este sistema resultan bastante complicados.

Por su definición, no se puede representar el número cero en este sistema. Si se introdujera cualquier símbolo para representar al cero, eso convertiría al sistema en un sistema de numeración binario. Esto caracteriza, por ejemplo, al sistema de numeración romano, que es incapaz de representar la ausencia de algo, lo cual es un inconveniente grande para la Matemática y su desarrollo.




No hay comentarios:

Publicar un comentario

  LOS NÚMEROS ENTEROS. Se conoce como números enteros o simplemente enteros al conjunto numérico que contiene a la totalidad de los números ...